

The SORCE Mission

The *SORCE* mission is one element of NASA's Earth Science Enterprise. *SORCE* is dedicated to the measurement of solar irradiance — both total and spectral irradiance.

- The *SORCE* has four solar irradiance instruments designed and built at LASP.
- The *SORCE* spacecraft was developed by Orbital Sciences Corporation.
- The *SORCE* was launched on a Pegasus XL rocket on January 25, 2003, and is in a 40° inclination orbit at an altitude of 620 km.
- The *SORCE* is operated from a control center at LASP.

Postcards from SORCE

Observation of Climate State Variables

- Total Solar Irradiance
- Spectral Solar Irradiance
- Particles and fields

- Clouds
- Water
- Greenhouse gases
- Shortwave and Longwave surface radiation
- Snow/Ice Cover
- SST and SAT
- Ocean Salinity
- Ocean Topography
- Soil Moisture
- Costal Zones and Margins
- Vegetation
- + many others

The Earth's Radiation and Energy Balance

Radiation Balance of the Earth (Jeffrey T. Kiehl)

Basic Radiometic Measurements

The total irradiance or radiant flux density is the radiant flux across a surface element, dA:

$$E = \frac{d\Phi}{dA} \qquad \{W / m^2\}$$

The spectral irradiance, E_{λ} , is the radiant flux density per unit wavelength interval:

$$E_{\lambda} = \frac{d^2 \Phi}{dA d\lambda}$$
 {W / m³}

NOTE: the Total Solar Irradiance, TSI, is the integral over all wavelengths of the Solar Spectral Irradiance.

$$E = \int_{\lambda=0}^{\infty} E_{\lambda} d\lambda$$

SORCE Instruments

Concept of Electrical Substitution Radiometers

- Based on the measurement of heat flux. Two identical sensors, one active and the other used as a reference, are connected so that they are in the same thermal environment.
- Joule heat is supplied to each sensor by an "actively controlled" heater circuit so that they attain the same temperature.
- These sensors have high absorptance in order to efficiently collect radiation. Photon energy is completely converted to heat.
- A shutter opens and solar radiation is allowed to fall on the active sensor a corresponding amount of Joule heat must therefore be removed from the active sensor in order to maintain the heat flux balance. The change of Joule heat to the active sensor is equivalent to the amount of radiation now incident upon it.

Major Improvement of the TIM ESR

- Phase sensitive detection at the shutter fundamental frequency
- Pulse width modulation of the heater power
- Use of Nickel-Phosphide,
 NiP, black absorber

TIM Measurement Equation

TIM TSI Record

The TIM Measurements Are Very Precise

TSI Record

Model of TSI

Solar variability on all temporal and spatial scales is intimately connected with variations of the solar magnetic field

Spectral Irradiance Monitor — SIM

·Instrument Type: Dual Féry Prism Spectrometer

·Wavelength Range: 200-3000 nm

·Wavelength Resolution: 0.25-33 nm

Optics: Suprasil 300 prism

•Detectors: ESR, 5 diodes

Absolute Accuracy: 300 ppm

•Relative Stability: 100 ppm/year

•Field of View: 1.5° x 3.5°

•Mass: 22 kg

Orbit Average Power: 25.3 W

SIM Optical Concept

SIM ESR Irradiance Spectrum

Solar Variability in the Ultraviolet

Solar Variability in the Visible - Short Wavelengths

SOR CE

Solar Variability in the Visible – Long Wavelengths

Solar Variability in the Infrared

SORCE SOLSTICE

sorce solstice continues the UARS data base. There are improvements in all aspects — stellar calibration, spectral resolution, and overall instrument performance.

Solar Stellar Comparison

Magnesium II Index

Mg II Time Series

Light Curves of the October Activity and X17 Flare

Follow-On to SORCE (after 2008)

2007 to 2011

NASA plans a <u>Solar Irradiance Gap Filler</u> (SIGF) that will be partially accomplished by placing a LASP TIM on the GSFC GLORY Mission. This will continue the long-term data record of TSI, but will not continue the spectral measurements of *SORCE*. There are no current plans by NASA to continue the UV (λ < 200 nm) irradiance observations of SME, UARS, TIMED, and *SORCE*.

2013 to 2020 ++++

NOAA/DOD/NASA will conduct the NPOESS (National Polar Orbiting Operational Environmental Satellite System) from 2010 onward. The payload will include the TSIS (Total and Spectral Irradiance Sensor) which includes a TIM and SIM instrument and a pointing platform. LASP is under contract with NGST to provide TSIS for a series of NPOESS spacecraft. There are no plans for the UV spectral irradiance to be provided on the future missions.

1730 NPOESS

2013

TIM May Be Flying on Glory?

